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Abstract, We present a method for extending charged point particles into strings, within 
a non-relativistic framework. Our method allows a discussion of models with a non-uniform 
mass and charge distribution, such as strings with quark-like endpoint masses. The form 
factor associated with a ground-state charged string is calculated, which shows a rapid 
fall-off with momentum transfer. We discuss the question of the second-quantisation of 
such models. 

1. Introduction 

Relativistic strings were developed originally as models of strongly interacting quark- 
antiquark bound-state systems in the late 1960s. At that time, a popular model of 
mesons was of a quark-antiquark pair connected by a gluon flux tube, the latter playing 
the role of a string. In the Nambu-Goto model$ the end quarks are ignored, and the 
action integral concerns only the open string surface swept out in spacetime. An 
important feature of this model was that it predicted a Regge-type spectrum of states, 
and the possibility of accounting for internal degrees of freedom in a novel way. 

Subsequently, string theory underwent a profound transformation in its interpreta- 
tion, and it is fair to say that most of the original motivation for ‘fundamental’ string 
theory has evaporated (this is not the case for hadronic strings based on QCD). For 
instance, the end quarks have gone, and there seems little or no value in a Regge-like 
spectrum of states when the mass gap is enormous, with conventional particle fields 
being regarded as manifestations of superstring ground states. Furthermore, there 
seems little point in requiring string theory to predict Veneziano-type scattering ampli- 
tudes when we are discussing Planck-length physics, because we have no reason to 
believe that such amplitudes mean anything on such scales. The proper place for these 
amplitudes is solely within the context of hadronic physics, where they have some 
phenomenological basis. Overall, the physical scale associated with fundamental strings 
and superstrings are quite different to those originally envisaged, being a factor 
down on ordinary hadronic length scales. At this time it is not clear what these new 
strings mean in terms of phenomenology. 

In this paper we take the concept of the string literally, and discuss a model for a 
particle extended in one dimension. Unlike most conventional string models, our 

t E-mail address: JAG@UK.AC.NOTT.MATHS 
f Full details of the Nambu-Goto model are given in [l]. 
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particular type of model has been constructed to allow a continuous mass and charge 
distribution along the string. This presents a difficult problem if we insist on a Lorentz 
covariant theory, and in this paper we restrict the discussion to a non-relativistic 
formulation. Relativistic string models usually raise problems with time-like oscillator 
modes. These may be circumvented with the use of constraints, with all the well known 
consequences of conventional string theory. What motivates our work are some interest- 
ing questions which do not require relativity to make themselves apparent, and in this 
paper we restrict our attention to these questions alone. Consequently, many of the 
standard string topics thought essential to relativistic string theory such as conformal 
invariance and Virasoro algebras will not occur in our discussion. 

A particularly interesting and inevitable question is the meaning of the second- 
quantisation of string models. What makes this a rather special problem is that from 
some naive ways of looking at the problem, string second-quantisation should be 
equivalent to particle 'third-quantisation'. Relativity is not necessary to this discussion, 
in the same way that it is possible to second-quantise non-relativistic Schrodinger 
theory, and create a non-relativistic many-particle theory. In such a theory anti-particles 
do not appear as a matter of course, but can to be put in by hand. We will discuss 
the second-quantisation of our string model towards the end of this paper. 

Throughout this paper we shall deal with real bosonic string degrees of freedom 
x ( u ,  t ) ,  where x = (XI, .  . . , x")  are inertial (Cartesian) coordinates in n-dimensional 
Euclidean space, U is the string parameter, and t is absolute time, which plays the 
role of a dynamical evolution parameter. We will denote partial derivatives in the 
usual way: 

ax 
XI'-. 

. ax 
X'- 

a t  d U  

In conventional bosonic string theory, the action integral 

Sfi = [: d7 [: d a  2 (x ,  x')  

gives the Euler-Lagrange equations of motion 

with endpoint constraints 

These constraints are the price paid for trying to build a continuum model with a 
sharp cut-off at a = 0 and a = T. Actually, it was this which originally motivated our 
work. 

Because of the constraints (1.4), it is traditional to formulate open string theory 
on the interval [0, T I ,  and in a suitable gauge to assume a particular mode expansion 
for the coordinates x ( a )  based on cosine functions, i.e. 

a 

x(a)  = xo+ x, cos(na). 
n = l  

Such an expansion has the merit of satisfying the endpoint constraints (1.4). However, 
this expansion generates a problem with completeness, because a representation of 
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the functional derivative 6/rSx(o) involves both cosine and sine terms. We expect to 
encounter this functional derivative in the Schrodinger coordinate representation of 
the momentum p ( a )  conjugate to x ( a )  when we quantise. However, on quantisation 
only the coefficients x, in (1.5) become operators, the cosine terms remaining c-numbers. 
There is then no obvious way of arranging for the appearance of sine terms in the 
commutator 

1 1 1 "  
-[$(a), ?(a')]= 6(a-a ' )  =-+- [cos(na) cos(na')+sin(na) sin(na')] (1.6) 
h 27r 7 T n = 1  

which we would have imposed if we did not know about any endpoint constraints. 
The usual method of circumventing this problem is to extend the string to the unphysical 
interval [-7r, 01, and to restrict string states to those described by even functions of 
x ( a )  and p ( a )  on the interval [-7r, 7r] [l]. 

This problem arises really because the Nambu-Goto string model of mesons ignores 
the quarks at the endpoints, and with them their masses. Dynamical (i.e. physical) 
consistency then forces the endpoint derivatives to vanish and to remain zero, whereas 
mathematical completeness knows nothing about quarks, and imposes no such con- 
straints. Our approach is to tamper with the physics of the situation, rather than move 
away from the quantisation condition (1.6). We note that even tiny masses at the 
endpoints would allow non-zero derivatives there, and we investigate this in some 
detail. We introduce masses over our string in a certain smooth way, which avoids 
confronting continuous dynamical degrees of freedom with sharp cut-offs. As a check, 
we find that in the limit of these masses tending to zero we recover the usual string 
mass spectrum and the expansion (1.5). The advantage of our approach is that it allows 
us to investigate the physics of strings with non-zero endpoint masses. A string with 
discrete non-zero endpoint masses will be referred to as a bolas, after the device used 
by South American gauchos to catch cattlet. 

Actually, relativistic bolas strings have been considered in the past [ 1,2], but with 
apparently little success, because of nonlinearity in the chosen models. We do our best 
to avoid this in our model building, and we can succeed completely in the non-relativistic 
case. Our approach has the great merit of utilising standard Sturm-Liouville theory, 
and this allows us to obtain a spectrum for the quantised non-relativistic equal-mass 
bolas, discussed in the next section. Following that, we consider the second quantisation 
of our model. Eventually, we are confronted with the question of what the analogue 
of the Feynman functional-type integral might be in the case of string degrees of 
freedom, if it exists. This would require us to consider a calculus using functionals as 
the basic variables rather than square integrable functions which are used in conven- 
tional second-quantised theories. 

2. Lagrange formalism 

In this section we consider a model of a non-relativistic open string propagating in a 
two-dimensional Newtonian spacetime. Our model allows the fixing of a mass m to 
each end of the string. This allows the dynamical equations of motion to support 
non-zero derivatives with respect to the string variable a at the endpoints. In conven- 
tional open-string models m is set to zero, which forces the derivatives to vanish at 

t A real bolas actually involves three masses connected to a common vertex by strings. 
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the ends. As discussed in the introduction, this has implications for the traditional 
mode expansion, because on the interval [0, T ]  the coefficients of possible sin nu terms 
must vanish for consistent dynamics. 

Our dependent string variable is denoted by X ( U ,  T ) ,  where for the open string U 

is usually chosen to lie in the interval [0, T ] ,  and T is the dynamical evolution parameter. 
However, we find it very convenient to extend the range of U to the real line, and all 
functions of U are taken to have domain R. Integrals over U are denoted by 

m 

(g )=  d u d u )  (2.1) 

for any function g of the string variable U, and we reserve the notation (4,  I)) for the 
inner product of quantum state vectors. The extension of the interval [0, T] to R is no 
more radical than the extension to [ -T,  T ]  in the standard approach to open strings 
[ 11. Throughout this paper we choose to regard the string parameter U as dimensionless, 
whereas the temporal evolution parameter t will always have the dimensions of time. 

The Lagrangian we will consider is of the general form 

L = g p i 2  - fix'2) (2.2) 

where p and R are strictly positive functions on R which are assumed to fall off 
exponentially or faster as cr tends to *W. This system represents a free extended particle 
or string. We will consider coupling external electromagnetic fields to this object in a 
later section. 

We may justify such an approach by noting that hadronic strings such as the 
Nambu-Goto model were originally regarded as abstractions from more fundamental 
but intractable theories such as quantum chromodynamics, and were not thought of 
as necessarily fundamental objects in their own right. Models of the type (2.2) should 
be regarded as approximations to some unspecified underlying dynamics. This is 
particularly the case if we have 'fundamental' Planck-scale strings in mind, where we 
have absolutely no idea of what lies beyond these strings. With suitable choices for 
the functions p and R (which are not here regarded as dynamical degrees of freedom, 
and are assumed independent of T ) ,  we expect to approximate conventional string 
theory as closely as we wish. To what extent this is true for relativistic strings is left 
for a subsequent paper. 

Variation of the action integral 

gives 

SSfi = [ (pXSX)] 2 - dT([ pX - ( Rx')'] SX) I: (2.4) 

from which we deduce the Euler-Lagrange equations 

px = (fix')' (2.5) 
and a conserved total linear momentum 

PT = ( p i ) .  (2.6) 
To illustrate our method, we will make a specific choice of functions p and n. Let 

us suppose we wished to model a true bolas, i.e. a string with a point mass m at each 
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end. If we tried to attach point masses directly to the ends of a string, we would 
encounter an interaction between the continuous string degrees of freedom and the 
discrete degrees of freedom of the end masses. We found severe problems when we 
tried to use Heaviside functions and Dirac delta functions directly. In particular, we 
encountered second-class constraints, which cause problems when we try to quantise 
using Poisson brackets. Our method is to avoid this by the use of sequences of 
non-vanishing, continuous functions which approximate these distributions, and then 
take appropriate limits only after the full dynamics has been worked out. 

First, we define the sequence of strictly positive functions 
f a ( a )  = [ T E ] - ” ~  e x p [ - ( a - a ) * / ~ ]  (2.7) 

which represents an approximation to the Dirac delta at a = a. We shall normally 
suppress the continuous sequence label E, it being understood. Then 

l im+fa(a) -8(a-a)  
E ” 0  

and 

( f a >  = 1 .  
Another useful sequence of functions is 

U ( a )  = [;a du[fo(u) - f A U ) l  

which approximates the unit function on [0, 771 

lim U ( a ) - e ( a ) - e ( a - ~ )  
F - O +  

(2.9) 

(2.10) 

(2.11) 

where @(a)  is the Heaviside step function. It is clear that U is strictly positive on the 
real line, and has the property that 

For our strategy to work in the case of a true bolas, we expect our results to be 
independent of the particular choice of approximation sequence for the various 
distributions concerned. 

U’ = f 0  -f,. (2.12) 

Now we make a specific choice for the functions p and CL; we choose 

P ( c + )  = mfo(a) + m f r ( 0 )  + I.U(a) (2.13) 
and 

CL(a) = w 2 U ( a ) .  (2.14) 
In the limit E + Ot this should be equivalent to placing discrete masses m at each end 
of a finite string of length T and mass density p, with string potential constant w 2 .  
Then the equations of motion (2.5) take the form 

( mfo + mfT + p U ) x  = n’x’ + ax‘’ 
= w ’ ( f 0 - f , ) x ’ + w 2 U x ” .  (2.15) 

Now in (2.15) we may consider the ‘bolas limit’ E + O+, and equate coefficients of the 
functions U, fo and fr. This may be justified by integrating over various subintervals 
of the real line. In the limit we find the equations 

px = 02x1’ O<a<n (2.16) 
(2.17) mxo= o xb 

(2.18) mx, = -U x, 

2 

2 ,  
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where xo= x(0, T )  and x, = x( T,  7). For cr < 0 and cr > T the behaviour of x is undeter- 
mined by the dynamics in the bolas limit, and may be ignored because physical 
quantities such as the total momentum (2.6) will only involve the interval [0, T] in 
this limit. 

The equations of motion (2.16)-(2.18) are essentially those found in the so-called 
Lamb problem [3], which is a system consisting of an infinitely long massive, vibrating 
string connected to a mass m at one end, which can move along a rod perpendicular 
to the string. This system is interesting because of its similarity to the electrodynamics 
of point charges coupled to the electromagnetic field. For such systems, it is necessary 
to discuss the boundary conditions very carefully, because the role of causality appears 
to be undermined. Basically, the Lamb string involves a left-moving wave coming into 
the mass from spatial infinity, and a right-moving wave leaving the mass. It is up to 
us, via the boundary conditions, to decide which of these waves is interpreted as 
causing the other. In our case we could regard our system as a finite non-dissipative 
Lamb string, with a mass at each end. 

This situation is reminiscent of the Wheeler-Feynman theory of radiation [4], where 
the propagation of the electromagnetic field is considered to involve half of the retarded 
solutions and half of the advanced solution. One end of our string may be regarded 
as a charge and the other as the rest of the universe, with the string as the medium of 
communication. Yet another similar situation occurs in Feynman’s path integral formu- 
lation of the polaron [5], which models a point electron coupled to the phonon 
vibrations in a continuous polarisable solid. 

We now consider what sort of classical solutions are implied by the equations of 
motion (2.16)-(2.18). First, we may write the general solution to the pure wave equation 
(2.16) as the sum of a left-moving wave F and a right-moving wave G: 

Then the conditions (2.17), (2.18) generate the coupled equations 

D(D-P)G(T) = -D(D+P)F(T) 

D(D+P)G(T) = -D(D-,B)F(T- T )  

where 

(2.19) 

(2.20) 

(2.21) 

These equations may be rewritten as 

where k is an arbitrary constant. If we write 

(2.23) 

we find 

( D + P ) ~ H ( T ) = ( D - - ~ ) ~ H ( T -  T). (2.24) 

This is a difference-differential equation, which models the finiteness of the string, 
and the reflection of waves from the end masses. This sort of equation is much more 
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subtle than an ordinary differential equation, as it really involves derivatives of all 
orders. It is possible to prove that if D2H is given, integrable, and of bounded variation 
on the interval - T s  T <  0 then we may determine H in the interval [0, TI,  and hence 
for any interval [6]. Once we know H then we can reconstruct F and G, and hence 
determine the classical motion. This gives us some reason for believing that the system 
can be quantised, which we show in the following sections. We note that here T is 
the time for a signal to propagate from one end of the string to the other and back again. 

3. The Hamiltonian formalism and canonical quantisation 

From the Lagrangian (2.2) we obtain the canonical momentum 

It is very important that the density p has no zeros on the finite real line. Otherwise 
we would encounter primary constraints, which makes the Hamiltonian analysis 
tedious. It is also fairly easy to set up bolas-type models which generate second-class 
constraints. Although these can be handled via Dirac brackets, our approach has the 
great merit of avoiding both sorts of constraints in the non-relativistic case. The 
Hamiltonian for our system is 

H = f ( p - y + O x 1 2 )  (3.2) 

which, with the canonical Poisson brackets 

{ p ( u ) ,  x ( a r ) ) P B  = - 8 ( a -  

x = p - I p  

$ = (nxr)’. 

gives Hamilton’s equations of motion 

(3.3) 

These are equivalent to the Euler-Lagrange equations obtained in the previous section. 
Canonical quantisation is implemented by replacing the Poisson bracket (3.3) with 

the commutator 

[$(a), $(a’)] = - ih8(a-u’ ) .  (3.6) 

The total momentum operator is just 

@T = (6) (3.7) 

which has commutation relation with the Hamiltonian 

[$T, A]= i h ( ( W ) ’ ) .  (3.8) 

( ~ l l ( { ~ ~ ’ l r w 2 )  = ({~WlIi’lT*)}’) = 0 

We will require all physical states IT,), Iq2) to satisfy the condition 

(3.9) 
i.e. we assume the matrix element (q,12’(a)lT2) does not diverge in magnitude as U 

tends to fa. Then total momentum conservation will hold for physical states, because 
the function 0 falls off rapidly as U tends to fa. 
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A Schrodinger (functional) representation for x^( a) and $( a) is 

2(a)  + x ( a )  x ( u )  E R 
(3.10) 

These linear operators act in the vector space of functionals of the string function x. 
We assume properties analogous to those found in point quantum mechanics, such as 
the existence of a complete basis set {Ix)} of string states, with for example 

(3.11) (xlx’) = S[X - x’] 

where the right-hand side of (3.11) is a functional delta function, and 

x^(a)ix) = x(u)lx).  (3.12) 

If we define the wavefunctional 

*[XI = (XI*) (3.12’) 

then V[x] should satisfy the Schrodinger wavefunctional equation 

(3.13) 

where the symbols : : denote normal ordering, as in conventional field theory. How 
this may be done is explained in the next section. 

4. Ladder operators 

The quadratic nature of the Hamiltonian makes it likely that a relatively simple algebraic 
structure exists, such as is found with the harmonic oscillator. To show this, we consider 
the operators (gb) and (h?), where g and h are c-number functions of a. These operators 
have the following commutation relations with the Hamiltonian: 

and 

In (4.1) we have integrated by parts, which is valid because these operators will be 
applied within matrix elements between physical states. Now we seek a linear combina- 
tion of these operators which behaves like the ladder operators in the harmonic 
oscillator; i.e. we try to solve for A in the equation 

[fi,(g$+hx^)]= hA(g$+h?). (4.3) 
This gives the necessary and sufficient conditions 

- i p - ’ h  = Ag i(Rg’)’ = -Ah. (4.4) 

Hence 



Strings w i th  arbitrary m a s s  a n d  charge densit ies 3629 

This is a second-order eigenvalue differential equation in self-adjoint form with weight 
function p, to which all the standard results of Sturm-Liouville theory can be applied. 
These are that the eigenvalues A‘ are real and that the corresponding functions gA are 
elements of a complete, orthogonal set [7]. By considering the integral ( p g : )  it is easy 
to prove that A’ is strictly non-negative, which is necessary for the viability of our 
analysis. We will assume that we have a discrete spectrum of eigenvalues throughout 
this paper. 

I f  we define the operators 

for A 3 0, we may use the results of Sturm-Liouville theory to find the commutation 
relations 

(4.8) 

(4.9) 

(4.10) 

First, we have to discuss the possibility that A =O.  From (4.5) we deduce that g o  is a 
constant, which we set to unity. Then 

A - A ’ - ( *  * 
0 -  0 -  P)=& 

Also, for v # 0, 

(4.11) 

(pgogv )  = (pgu)  = - v - 2 ( ( n g : ) ’ )  = 0. (4.12) 

Hence E‘, commutes with A, and A.:, v # 0. For A, v # 0, we have 

(Pgd! , )  = -V-’(gA ( R g ’ , ) ’ )  = f 2 ( g ’ , n g ’ , )  = A-2(g ’ , f lg : ) .  (4.13) 

For A # v we deduce (giClg’, ,)  = 0, which means all the commutators (4.8)-(4.10) vanish 
in this case. Hence, the only non-zero commutation relation is 

L A , ,  =2AhSAv(pg: )  A, v50. (4.14) 

The assumed completeness of the solutions gA leads us to approximate any suitable 

f ( a )  1 (g :p ) - ’ ( fgAp)gA ( a )  (4.15) 

string function f by the discrete sum 

and the Dirac delta by 

s ( a - a ’ ) - C  ( g : p ) - ’ g A ( a ) g A ( a ’ ) p ( a )  

(gzhp)-’gA(a)gA(u’)p(a’) .  

Then the Hamiltonian may be written as 

fi = f  (g:p)-’A:A, 
A 

=i(p)-’@TFT+ (g:p)-’A:A,+ 
A > O  

where we have normal ordered to eliminate the zero-point energies. 

(4.16) 

(4.17) 
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An alternative approach is to expand the string coordinates as follows: 

== 1 x̂AgA (a)*  
A 

Then the Hamiltonian is given by 

then the only non-zero commutation relations are 

[a,,, a; . ]  = s,,, A > O .  

We find 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

from which we may read off the energy spectrum directly. Clearly, the eigenvalue A = 0 
corresponds to free translations of the system, whereas the operators a: create towers 
of states separated in energy by multiples of RA. Energy eigenstates of the system are 
characterised by two sorts of quantum numbers; one of these is the linear momentum 
p ,  which may take on any real value. There is a continuum of oscillator 'ground states' 
Ip) ,  distinguished by their linear momentum p ,  which are annihilated by the operators 
ah ; 

lp ) = A>0.  (4.26) 
Excited states of these 'ground states' are given by repeated applications of the creation 
operators a:, and we define 

(4.27) 

where N = (n,,!, n A 2 ,  . . . 1. Clearly, i p )  = Ip, 0). If we define the Schrodinger energy 
eigenfunctional 

(4.28) 

(4.29) 
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is an energy eigenstate of the Schrodinger equation (3.13) with energy 

(4.30) 

The above is rather general, and we may be able to fit a variety of experimental 
energy levels with appropriate choice of functions p and R. For completeness, we will 
now find the equal-mass bolas energy spectrum. When p and Cl take the specific form 
(2.13) and (2.14) we find that (4.5) gives 

(4.31) w ’( fo -fc g ’ + w 2  Ug ” = - ( mfo + mfT + p U )  A ’g.  

In the bolas limit, equating coefficients of fo, fn, and U gives 

w2g“(  F) = -FA ’g( a )  O < u < 7 r  

w2g’ (0 )  = -mA2g(0)  

w2g’( T) = mA2g( T ) .  

For A Z 0, equation (4.32) has the solution 

g ( u )  == cos(* w U +  k )  

(4.32) 

(4.33) 

(4.34) 

(4.35) 

where we set the normalisation constant to unity. Then (4.33) and (4.34) give the 
conditions 

mh A &  mh 
tan( k) = - t a n ( T T + k )  = -WJII. 

Then A satisfies one of two possible equations: 

A&?T mh 
tan(’) = -- 

U& 

(4.36) 

(4.37) 

(4.38) 

We may label solutions of (4.37) by 

A = * A 2 n  n =0, 1 ,2 , .  . . (4.39) 

and those of (4.38) by 

A = * A z n + l  n = 0 , 1 , 2  , . . . .  (4.40) 

The solution A. = 0 in (4.37) corresponds to the continuum ‘ground states’ discussed 
above. 

In the limit m +O, which corresponds to the usual pure string model, we find 

w 
A2,, = 2n- 

A*,,+, = (2n  + 1 )  - 

J;;; 
W 

& 
and we recover the usual cosine solutions 

g, ( a )  = cos( na) n =0,1,2,. , 

(4.41) 

(4.42) 

(4.43) 
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which have zero endpoint derivatives as we would expect. In the more general bolas 
case ( m  # 0) states created by various a: operators need not be degenerate in energy 
with any others, but in the pure string all excited levels above the first are degenerate. 

5. The charged extended particle 

In this section we will model a charged extended particle in three spatial dimensions. 
First, we discuss the neutral extended particle system. This will be described by 
Lagrangian 

L = & p X .  x -ax’ * X ’ )  (5.1) 

where X ( U )  = ( X I ,  X 2 ,  X 3 )  in standard Cartesian coordinates. The equations of motion 
for this system are very similar to those for the one-dimensional system discussed 
above. An important difference is the existence of a conserved orbital angular momen- 
tum vector L, given by 

L = ( X  x P )  (5.2) 

which satisfies the standard angular momentum algebra 

[L’, L’] = ifieijkLk. (5.3) 

The coupling of external electromagnetic fields is done using the minimal coupling 
prescription, which gives the Hamiltonian 

H = ( f p - ‘ ( P -  q A )  * ( P -  qA) +;OX’ * X ’ +  44). (5.4) 

In this equation the fields A and 4, which are defined over a region of spacetime, 
interact with the string at a local level. This means that they should be regarded as 
functions of the string variable U in (5.4), because they are being sampled on the 
string. The function q of U is the electric charge density over the string, and integrates 
to give the total charge eT of the extended particle: 

( 4 )  = eT* (5.5) 

The first-quantised string equation (3 .13)  now becomes 

(5 .6)  6X 
a 

a t  
i h - W[X] = (: $ ( -ih 

It is clear there are potentially serious problems in this equation with the functional 
derivative acting on A,  since 

6 -. A ( X (  a’)) = a(a - a ‘ ) V  - A.  
S X ( a )  (5.7) 

This diverges in the limit a + U’, unless we know V * A = 0. Some sort of point splitting 
or other regularisation procedure will be required to make sense of (5.7),  as in 
conventional quantum field theory. We will assume that this can be done, in the same 
way that we assumed the Hamiltonian for the free extended particle system could be 
normal ordered. Such problems are a recurrent feature of conventional second- 
quantised field theories. 
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Equation (5.6) is invariant under the gauge transformation 

A+ A’= A-Vx 

4 + 4‘ = 4 + d l X  

P[X]+W’[X] = exp(-i(qx)/h)Y[X] 

( 5 . 8 )  

where ,y is a scalar function on spacetime. If we define the gauge covariant functional 
derivatives 

8 
&=-+iqA/h 

s’ 
SX 

G=--iqA/h 
SX (5.9) 

then (5.6) becomes 

with conjugate equation 

(5.11) 

A very important question is the existence of a conserved charge density and current. 
Whilst there is an obvious form for the charge density in the case of a single-particle 
theory, a suitable definition has to be contrived in the case of a many-particle system. 
This is because in the latter case the Born probability density P*P depends on as 
many sets of three-vector coordinates as there are particles in the system. For a string 
this means the analogous object depends on an infinite number of coordinates. A 
proper charge density p(x, t ) ,  however, should depend on only three spatial coordinates, 
and should satisfy the following criteria. 

(i)  The total integral over space of p gives the total electric charge: 

d x p  = e,. 

(ii) There is a continuity equation 

a J + V  . j = O  

where j is the electric charge current. 
(iii) Both p and j are gauge invariant. 
A suitable definition of p and j which satisfies these conditions is 

p ( x ,  t )  = [dY](qS3(x- Y))P*[ Y I P [  Y] 
(5.12) 

) j(x, t ) = g {  [ d Y ] P * [ Y ] ( 6 4 S 3 ( x - Y ) - - 6 3 ( x - Y ) 6  4 P[Y]  
2 P P 

where we functionally integrate over possible string configurations, assuming the 
normalisation condition 

I [dY]P*[ YIP[ Y] = 1. (5.13) 
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These integrals may be defined either by slicing up the string, rather like a one- 
dimensional lattice, or by using some basis set over the space of string functions. A 
natural complete basis set to use is the set {gA} introduced in earlier sections. It is not 
hard to prove that these densities satisfy all the required properties of a charge density 
and charge current. 

These charge densities may be obtained directly and elegantly from the second- 
quantisation procedure, discussed in section 7 .  

6. Coulomb scattering and form factors 

In this section we will consider the scattering of a charged extended particle from a 
fixed Coulombic potential. In general, charged particles which have some extended 
structure do not scatter exactly like point charges. This happens in the case of the 
proton and the neutron. The departure from point-like behaviour is usually described 
by form factors, which are functions of momentum transfer. An electrically neutral 
particle such as the neutron can have a non-zero form factor. We will find the relevant 
form factor of an extended point charge in its ground state. 

Our notation in this section will be as follows. String coordinates along the string 
will be denoted by X(  U), with the decomposition 

In and out states will be taken to be of the form 

9p.N[Xl(f)  =exp(-iE,,,t/h+ip. x/h)ON[y1 (6 .2 )  

where N = ( n A , ,  n A 2 , .  . . ) denotes the string oscillator excitation numbers, @,[y] is an 
oscillator wavefunctional, and the energy is given by 

The normalisation of the scattering states is just 

W P  , N , ,  V p , & )  = J [ d X I W ,  [xl(t)~p,*[xl(t) 

= exp[i(E, , v -  E , , N ) ~ /  f i l l  dx exp[i(p -P’) - x/ h I [  [ d y l ~ X ~ [ ~ l ~ ~ [ y l  

= ( 2 . r r f i ) 3 ~ ( p  - p ’ ) ~ N , , . .  (6.4) 
This corresponds to a particle density of one per unit volume for the incident flux in 
a scattering beam experiment. 

We shall consider the simplest case, which involves the scattering of an extended 
charged particle by a pure Coulombic point-like potential. The time-dependent 
wavefunctional equation in this case is 

where the symbols : : denote appropriate normal ordering. In this model, the potential 
is due to a point charge e at the origin of coordinates. It should be possible to consider 
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the scattering of two strings, which is a calculation we reserve for the future. The effect 
of extending the source charge should be to smooth out possible divergent behaviour. 

A formal solution to (6.5) is 

where the retarded propagator G’[X, Y]( t ,  T )  satisfies the functional equation 

(ihd, +(: 7 h2 6x2 S2 - CLX’-X’:))G+[X, U](?, T ) = S ( ~ - T ) S [ X - Y ] .  (6.7) 

This has the formal solution 

We now consider the scattering of a string from an initial state Q p , N  to a final state 
9p,,Ns. The scattering matrix element Sfi is given by 

Sfi = lim t-x (qf, Vi) (6.9) 

which reduces to 

sfi = ( 2 7 w 3 6 ( P  -”,,,+ Rfi 
with the reaction matrix element Rfi given by 

(6.10) 

(6.11) 

Making a perturbation expansion of the form 

*[ YI(T) = q p , . v [  y ] ( T )  +. . (6.12) 

and neglecting all terms on the right-hand side except the first, we find 

Rfi = - i 2 7 ~ S ( E , ~  - Ep,:hi,)Mfi (6.13) 

where Mfi is the reduced matrix element 

It is easy at this stage to go the wrong way and encounter divergent integrals in Mfi. 
As a functional integral which is not a simple Gaussian integral, M f i  requires careful 
handling. We shall assume without proof that the finite answer we obtain for Mfi is 
the correct one. The key step is to do the integral over x first. We find 

h 2 e  
Eo/P’-p /  

Mfi = ( 4  I [ ~ Y I @ & ~ [ Y I @ N [ Y I  exp[i(p‘-p) * Y / ~ I ) .  (6.15) 

The remaining functional integral is defined here in terms of the coefficients in the 
expansion 

y(‘)= c YAgA((T) (6.16) 
h > O  
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For given values of ni and nA these integrals may be evaluated using the result 

dx exp(-x2+ipx) Hm(x)Hn(x)  

(6.18) 

where H,, is a Hermite polynomial and Lk-;” is an associated Laguerre polynomial. 
In principle this result allows a closed, albeit complicated, expression for scattering 
from an initial excited string state to any other excited state. If we believe that the 
observed elementary particles are ground-state configurations, then we will consider 
scattering with N = N ’  = 0 only. This leads to the result 

Hence the full reaction matrix for ground-state elastic scattering from a Coulombic 
potential is 

(6.20) 

From this it follows directly that the differential cross section is the standard Rutherford 
cross section multiplied by a rapidly decreasing function of momentum transfer squared. 
Essentially, the extended charged object in its ground state can be thought of as a 
single particle with an associated form factor 

(6.21) 

Taking into account the delta function in (6.20), we may write this form factor as 
03 

F ( p ’ - p )  = I-, d a q ( a )  exp( -p’ sin2(iB)G(cT) 
h 

where e is the scattering angle and G ( a )  is the function 

(6.22) 

(6.23) 

This leads to the prediction that extended particles should scatter weakly at high 
energies in non-forwards directions, i.e. as p2 tends to infinity at fixed, non-zero 8, 
since then the exponential term provides a severe damping factor in the integral. On 
the other hand, for finite energy in the forwards direction ( e  = 0) the exponential term 
is unity, and the form factor is just equal to that of a point particle of total charge eT. 
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7. Second-quantisation 

In this section we consider the second-quantisation of the free string model presented 
above. The second-quantisation of relativistic strings has been considered from an 
operator point of view by various workers [9-111, but there are fundamental problems 
which we do not encounter. Most importantly, we are able to use a single time parameter 
for all points of our string, which cannot be done in a manifestly covariant way for 
relativistic strings [ 101 and requires light-cone coordinates. Another important 
difference is that our first-quantised string model has no first-class constraints, whereas 
the first-quantised relativistic bosonic string has an infinity of them. Both of these 
differences make our programme of second-quantisation much easier than its relativistic 
counterpart. 

Our approach is to consider the wavefunctional equation 

for the state functional in the first-quantised theory to be a classical equation of motion 
for a classical functional “[XI, which becomes an operator in a second-quantised 
theory. In our model, the dynamical degrees of freedom will be functionals rather than 
functions. 

An appropriate classical Lagrangian is 
c 

L =  [ d X ] 2  J 
f i2  6 8 

= 5 [dX]Y*[X]( ih;l - (:- 2p - sx - + f a x ’  sx * X’:))Y[X]. (7 .2 )  

As before, we assume that all functional integrals, functional derivatives, and functional 
delta functions can be expressed in terms of the complete basis set of functions { g A }  
discussed earlier. Questions about the interchange of limits and integrals should be 
avoided by working with finite sums of terms in basis set expansions, and taking the 
number of terms to infinity only at the end of a calculation. This is a traditional way 
of dealing with functionals, which usually provides a workable answer. 

The Euler-Lagrange equations of motion for Y and Y* can be recovered in the 
usual way, so we move directly to a Hamiltonian formalism. We define the conjugate 
momenta 

= ifiY*[X] 
a 2  

rI[X] = 

ii[X] E 

aaIw[xl 
a 2  

aa,Y*[x] = O. 

(7.3) 

(7 .4 )  

In the language of Dirac constraint theory, these are equivalent to the primary 
constraints 

x,[X]=ll[X]-ifiY*[X]=O 

xJX] = l=I[X] =o* 
At this point we have to contemplate the analogue of the Poisson bracket for these 

degrees of freedom. In classical point mechanics, the Poisson bracket involves partial 



3638 G Jaroszkiewicz and H Perry 

derivatives, whereas in classical field theory we use functional derivatives. Here, we 
have to use a concept which for want of a better name we will refer to as anf-derivative. 
The $derivative of a functional with respect to itself will be defined to be 

a.u[xlY[ Y] = 6[X - Y] (7.7) 

where the right-hand side is a functional delta function. We stress that we have not 
defined the f-derivative in terms of a limit process. If we wished to think in those 
terms, we would have to consider the concepts of continuity, etc in the space of all 
functionals, which is beyond our scope at this stage. We will use (7.7) formally, and 
assume that at the end of the day our manipulations are mathematically consistent. 
The development of such a calculus, if it exists, awaits further investigation. For the 
present, all the usual properties of a derivative will be assumed, such as linearity and 
the product rule for derivatives. For example, the $derivative of a function of Y is 
given by 

aF 
d.u[x]F{'P[ Y]} =- S[X - Y]. 

c3.u[xlY*[ Y] = 0 (7.9) 

(7.8) dW 
With the properties 

Gn[x]n[ Y] = S[X - Y] (7.10) 

we define Poisson brackets by 

(7.11) 

{n [x1 ,  p[yI}PB = -a[x- y1 
{fr[x], Y*[ Y]}pB = - 8 [ x  - Y] 

(7.12) 

(7.13) 

as we might expect. 
With these definitions, the primary constraints x, and x2 are second class, and so 

we need to construct Dirac brackets and eliminate the constraints xi before we quantise. 
The only variables left in phase space are then Y and Y*, with Dirac bracket 

{**[XI, Y[ Y]} - .!- 6[X - Y]. (7.14) 
D B -  h 

The total Hamiltonian is just 

(7.15) 

which, with the above Dirac bracket, leads to the correct classical equations of motion: 

atwx1 = {WXI, W D B  

(7.16) 
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For a charged string, the appropriate Lagrangian is 

- & + y X ’ * X t + q 4 : ) ) 9 [ X ] .  (7.17) 

Care should be taken not to confuse the gauge-covariant functional derivative & with 
the f-derivative Gq.  The charge and current densities (5.12) may be obtained from 
(7.17) by the functional derivatives 

(7.18) 

Quantisation of this classical system proceeds in the usual manner. Dirac brackets 

(7.19) 

In the free string theory, multi-string states may be created by repeated application of 
the operator Y”[X] onto the postulated ‘Fock space’ ground state 10). For example, 
a single-string state is given by 

IX) = ++[X]lO) (7.20) 

are replaced by commutators, so we end up with the functional operator algebra 

[++[XI, +[ Y ] ]  = -S[X - Y]. 

with normalisation 

(XI Y )  = S [ X -  Y] (7.21) 

as we might expect (taking (010) = 1). It is important not to confuse the ground state 
I””) of the many-string Fock space with the ‘oscillator’ ground states Ip,O) in the 
first-quantised single-string theory. We may refer to the former state as the ‘f-vacuum’, 
as it represents empty space, with no strings at all. Similar concepts were discussed 
by Kakku and Kikkawa [lo] in the context of relativistic bosonic strings. 

We may introduce source functionals into the Lagrangian, i.e. define 

LJ = L +  [ d X ] ( J * [ X ] 9 [ X ] + + * [ X ] J [ X ] )  (7.22) 

and construct Green functions in the usual way. In the presence of the source functional 
J [ X ] ,  we define 

zJ  = J (q0)J .  (7.23) 

J 

Then we have, by Schwinger’s action principle extended to this situation, 

-ifi%*[xlc,,ZJ = J (wh l ( t ) lo ) J  (7.24) 

-ifi%[x](,,Z’ = J(0l++[xl(t)lQ)J (7.25) 
where we use 

Other time-ordered n-string f-vacuum expectation values may be obtained in the usual 
way. 

In the case of a free string theory, we find 

Z i - e x p ( $ j  dt  [dX] I d f r j  [dYlJ*[Xl(t)G+[X, Y](t, t’)J[Y](t‘) ) (7.27) 

where G+[X, Y](t, t ’ )  is the retarded propagator discussed in the previous section. 
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At this stage it would seem that most of the standard structure of field theory will 
find a ready analogue in our model. This is only because we have touched on those 
aspects which do not require any great mathematical development. This is particularly 
true for thef-derivative discussed above, which we have defined in terms of its algebraic 
action on simple functions of a functional. A similar approach is used in the calculus 
of Grassmannian variables. What remains a more interesting question is the analogue, 
if it exists, of a Feynman path or functional integral in this model. Presumably, this 
involves a vastly more difficult mathematical programme than the development of the 
so-called ‘functional’ integrals constructed in field theory. At least there we may work 
in terms of complete basis sets of functions, or employ Feynman’s time-slicing approach. 
In the present situation we are dealing with functionals as the basic variables, and the 
meaning of an integration measure over the space of possible functionals remains 
unclear to us at this stage. A hypothetical integral over the space of functionals may 
be called an ‘f-integral’. As in ordinary second-quantised field theory, it may be possible 
to obtain the results of such integration indirectly, by solving appropriate f-differential 
equations. This is exactly what we have done in the above example of the free-string 
model. 

8. Concluding remarks 

In the preceding sections we have shown that it is possible to set up a consistent 
quantised non-relativistic theory of strings with varying charge and mass densities. 
One of our predictions is that a charged ground-state string scattering from an external 
Coulombic field should behave as if it were a point charge with a form factor which 
falls very rapidly with increasing momentum transfer squared. Other aspects of the 
non-relativistic string interacting with external electromagnetic fields are left as exercises 
for the interested reader. One problem we have not yet solved is the exact energy 
spectrum of a bound state of a string with a Coulombic point charge. 

Our attempt at second-quantisation via a functional-type approach has raised the 
spectre of a calculus of functionals, which we can only speculate on in this paper. In 
the calculus of functions, we can sometimes invoke completeness, such as occurs in 
Sturm-Liouville theory, to set up an operational definition of what we mean by 
functional differentiation, functional integration, and the functional delta function. 
We do not assume here that such a concept can be easily formulated in the calculus 
of functionals and for that reason we have made no attempt to set up an integral over 
functionals in this paper. 

None of these issues require special relativity to make their appearance. A natural 
question is what the introduction of relativity does to our model. This is beyond the 
scope of this paper, but some points may be discussed in anticipation of the answers. 
First, relativity does not coexist easily with models of extended objects in general, 
because extension implies simultaneity, which relativity teaches us is not an intrinsic 
concept. For this reason, the definition and description of extended objects in field 
theory is a notoriously difficult programme. In relativistic string models, this problem 
manifests itself as the need to remove time-like oscillator modes. This is usually done 
by introducing constraints, which make the full structure of such systems quite a task 
to unravel. We do not expect the situation to be any different with models such as 
ours. A second problem is that relativistic strings and varying ‘mass’ distributions tend 
to involve nonlinearities, as some earlier workers found [ 1,2]. Moreover, this ‘mass’ 
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distribution might not be equivalent to a true rest mass distribution at all. Our 
preliminary investigations have indicated that the obvious ways of introducing special 
relativity into our model do not achieve the anticipated goals. 

If we managed to set up a relativistic theory of our charged strings, then there 
would be some very novel questions to answer. A very serious problem would be the 
electromagnetic self-interaction of what is equivalent to an infinity of point charges 
propagating in a coherent way as a string. Possibly, one way around this would be to 
argue that such a string is the effective, renormalised version of a more fundamental 
system, with self-interactions already taken into account. A quantum electrodynamics 
of charged strings and anti-strings would be a very interesting programme to investigate. 
A related issue is what happens at vertices where strings are created. In conventional 
string theory, enormous efforts are taken to maintain string sheet continuity, because 
it is one of the guiding tenets of string theory that string vertices provide a way of 
avoiding divergences. This is one of the reasons for using a Euclidean formalism 
instead of a Lorentzian approach in conventional string theory. Our anticipation is 
that charge conservation will eliminate the problem of a string splitting into three in 
a direct way. The strings we have in mind are not hadron-like objects which can give 
rise to multi-string amplitudes directly, but much more like extended particles interact- 
ing via the traditional electromagnetic field alone. 

After this article was completed our attention was drawn to a series of interesting 
papers [8] by Nesterenko et al which have discussed bolas-type relativistic strings in 
background electromagnetic fields of various types. Their basic spectrum for a true 
bolas agrees with ours, but they do not discuss more arbitrary mass and charge 
distributions along the string. In principle, there is no reason to expect fundamental 
Planck-scale strings to have masses and charges only at the ends, so a more general 
model than the exact bolas should be considered. 

Acknowledgment 

One of us (HP) would like to thank the Science and Engineering Research Council 
for a research studentship grant during the time of this work. 

References 

[ l ]  Scherk J 1975 An introduction to the theory of dual models and strings Reo. Mod. Phys. 47 123-64 
[2] Chodos A and Thorn C B 1974 Nucl. Phys. B 7 2  509 
[3] Lamb H 1900 Proc. London Math. Soc. 32 208-11 
[4] Wheeler J A and Feynman R P 1945 Reo. Mod. Phys. 17 157-81 
[5] Feynman R P 1955 Phys. Rev. 97 660 
[ 6 ]  Pinney E 1958 Ordinary D i ~ e r e n c e - D i ~ e ~ e n r i a l  Equarions (Berkeley, CA: University of California Press) 
[7] Courant R and Hilbert D 1962 Methods ofMarhematical Physics (New York: Interscience) 
[8] Nesterenko V V 1989 I n t .  J .  Mod. Phys. A 4 2627-52 
[9] Witten E 1986 Nucl. Phys. B 268 253-94 

[ lo]  Kaku M and Kikkawa K 1974 Phys. Reu. D 10 1110-33 
[ l l ]  Schwarz J H (ed) 1985 Supersrrings: n e  First 15 Years ofSuperstring Theory vol 2 (Singapore: World 

Scientific) 


